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Abstract 

This paper presents a high-speed, FPGA-optimized implementation of boosted decision trees for 
handwritten digit recognition on the MNIST dataset, achieving a test set accuracy of 97.73% and a 
throughput of 640 million images per second on a Cyclone V FPGA. By binarizing input images and 
discretizing decision tree leaf scores, the design efficiently leverages FPGA hardware primitives 
without any floating-point operations. Each decision tree leaf node is implemented as a single lookup 
table, outputting high when active. Leaf node outputs are aggregated by counting active nodes per 
discrete value and summing them in a common base. Leaf score discretization is performed after 
each boosted tree training iteration, enabling subsequent trees to correct these discretization errors. 
A four-core pipelined architecture, operating at 160 MHz, consumes 625 mW of power, achieving an 
efficiency of 1.02 billion images per second per watt. This paper is submitted to the Digit Recognition 
Low Power and Speed Challenge @ ICIP 2025. 

This work is open source and available at github.com/martinloretzzz/mnist-fpga/. 

 

Introduction 

The Digit Recognition Low Power and Speed Challenge aims to find the fastest and most 
energy-efficient FPGA-based hardware accelerator for handwritten digit recognition on the MNIST 
dataset [1], targeting a test set accuracy exceeding 97.5%. To maximize throughput, we aim for the 
smallest model that meets this accuracy threshold. While multilayer perceptrons (MLPs) and 
convolutional neural networks (CNNs) can easily achieve this accuracy, their models typically contain 
tens or hundreds of thousands of parameters and rely on floating-point arithmetic, making them 
suboptimal for fast FPGA implementations. 

Tree-based models offer a compelling alternative due to their compact size and computational 
efficiency. Among these, boosted trees [2] stand out, achieving up to 98.2% accuracy with some 
parameter tuning, while we were unable to reach the accuracy threshold with other tree-based 
methods. 

Rather than designing a generic runtime that can run any boosted tree, we aim to hardwire the entire 
model on an FPGA into one block of combinatorial logic that processes one image per clock cycle. To 
fit the boosted tree into the limited number of logic units available on an FPGA, we modify the 
boosted trees to effectively use the hardware primitives of FPGAs. 
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Discrete Boosted Trees 

To optimize boosted trees for FPGAs, we eliminate all floating-point operations, as these require 
floating-point units that are slow and resource-intensive. Floating-point values appear in two places: 
the input image and the decision tree leaf scores. 

For the input image, we binarize it using a fixed threshold to convert grayscale images into binary 
(black or white) pixels. Experimental results indicate that a threshold of 0.3 works best for MNIST. 
This binarization eliminates the need for comparators in decision nodes, as inputs are already binary. 

Discretizing leaf scores is more complex, as post-training discretization would introduce significant 
errors. Boosted trees are trained sequentially, one after another, with later trees correcting the errors 
of earlier ones. This property enables discretization after each iteration when a tree is trained, 
allowing later trees to compensate for those discretization errors. 

The distribution of leaf scores is visualized in this histogram (for non-discretized trees): 

 

While the trees of the first iterations have larger scores, the magnitude of these scores decreases 
rapidly, with later trees contributing less to the total score. Based on this distribution, we propose this 
set of discrete values: { -1/4, -1/8, -1/16, -1/32, -1/64, 0, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2 }. 

This set enables a binary-like series expansion for intermediate values by combining multiple decision 
trees with identical conditions in sequence; whether the model uses this capability can be investigated 
in future work. 

To implement this discretization, we forked the XGBoost library [3] (github.com/martinloretzzz/xgboost) 
and modified it to adjust leaf scores after each iteration. Positive leaf scores are rounded down to the 
nearest discrete value less than or equal to the exact score, while negative scores are rounded up to 
the nearest discrete value greater than or equal to the exact score. 

The impact of this discretization on accuracy is minimal. For smaller trees, a slight reduction in 
accuracy is observed, whereas for larger trees, accuracy improves slightly. Investigating the reason 
for this improvement is a topic for future work. 

Number of Estimators Accuracy Exact % Accuracy Discrete % 

100 97.84 97.75 

150 97.98 98.05 

200 98.06 98.14 
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FPGA-Optimized Boosted Tree Implementation 

This implementation optimizes a boosted tree that consists of 10 classifiers, each with 100 decision 
trees as estimators and a maximum depth of four.  

Each decision tree generates a binary vector of up to 16 elements (2^4), one-hot encoding the active 
leaf node based on the binary pixel values of the input image. Each leaf node is implemented using a 
4-input lookup table (LUT), where all conditions along the path are connected by AND gates. 

For example, in this two-layer decision tree, leaf nodes are represented 
by the following Boolean expressions: 

L1 = ~A & ~B 
L2 = ~A & B 
L3 = A & ~C 
L4 = A & C 

This approach allows the implementation of all decision tree leaves of the MNIST classifier using 
16,000 4-input LUTs. By accounting for shallower leaves and excluding zero-score ones, this total 
number is reduced to approximately 12,500 LUTs. 

Since only one leaf node per tree is active at a time and the set of discrete values is small, we can 
further optimize by OR-connecting all leaf nodes with the same discrete value inside a tree to output 
whether the tree uses that specific value. The compiler optimizes these OR connected leaves to LUTs 
with more than 4 inputs and reduces the total number of LUTs needed for all trees to approximately 
6,000. 

Next, we sum the leaf values of all active leaf nodes. Without discretization, we could quantize them 
and use a large integer adder, but this would consume most, if not all, FPGA resources. 

With the discrete values instead, we can count the number of active leaf nodes for each discrete 
value, effectively counting active bits in a vector. These counts are then converted to a common base 
of 0.25 with bit shifts (enabled by the choice of the discrete values) and summed to compute the 
classifier’s score. The counters are implemented as parallel prefix adders. 

The predicted digit is then determined by identifying the classifier with the highest score, using a 
four-step comparison tree.  

See the appendix for a detailed example of these calculations. 

The entire boosted tree implementation forms a single block of combinatorial logic, processing one 
image per clock cycle (at 25 MHz). To increase throughput, we split the design into smaller stages to 
pipeline it. For the highest throughput classifier, we use 16 pipeline stages with a clock rate of 160 
MHz, leading to a latency of 100 ns. A single MNIST classifier only utilizes 22% of the available logic 
units of the FPGA, so the design is synthesized four times to process four images per clock cycle. 

The FPGA implementation’s accuracy of 97.73% on the MNIST test set is slightly lower than the 
97.75% of the discretized model running with the XGBoost library, likely due to rounding errors during 
the conversion of the value counts to the common base. 

For a clearer understanding of the implementation, refer to the simple-pipelined tagged version, which 
provides a four-stage pipelined design. The 16-stage pipelined, four-core implementation used for the 
results is available in the master branch. 
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Results 
FPGA Cyclone V (5CEFA7F31I7) 

Logic utilization 51,015 / 56,480 ALM (90%) 

Accuracy 97.73% 

Clock Rate 160 MHz 

Setup Slack* 0.052 ns 

Cores 4 

Throughput 640 Mimg/s 

Latency 16 clock cycles (100 ns) 

Power 624.90 mW 

Images detections per second per watt 1024.1 Mimg/s/W 

* Slow 1100mV -40°C (worst case)  

To reproduce these results, follow the steps described in the Readme.md 

Conclusion 

This work presents an FPGA-optimized implementation of boosted decision trees for MNIST 
handwritten digit recognition, achieving a test set accuracy of 97.73% while processing 640 million 
images per second. By discretizing the leaf scores during training and binarizing input images, we can 
efficiently leverage FPGA hardware primitives with minimal accuracy loss. 

This approach is applicable to accelerate boosted trees on FPGAs when inputs can be binarized with 
negligible information loss. These results demonstrate the potential of hardware-accelerated machine 
learning models for high-speed inference in resource-constrained, low-power environments. Future 
work could eliminate the binarization constraint by quantizing the input and using comparators in the 
decision trees. 

This design achieves an efficiency of 1.02 billion images per second per watt. 
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Appendix: Example Calculation 

 

This example illustrates the calculation process for predicting the score of a single digit using two 
single-layer decision trees. The process involves three main steps: 

1. Determining Active Leaves: We first identify the active leaves in the boosted tree based on 
the input image. For this example, consider an input where pixel P12 = True and P14  = False. 
These conditions activate leaves L0 and L3  (decision_trees.sv). 

2. Aggregating Active Leaves: The active leaves are counted for each discrete value using the 
equations defined above for C0.5, C0.25 , and C0.125  (leaf_counters.sv). 

3. Computing the Final Score: The counts are converted to a common base, in this case, 0.125, 
and summed to compute the classifier’s score. In this example, the resulting score is 6 
(counter_adder.sv). 

This process is repeated for the classifiers of the 9 other digits, and the digit with the highest score is 
selected as the final prediction (max_value_index.sv, mnist_classifier.sv). 
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