
Discretized Boosted Decision Trees for High-Speed
FPGA-Optimized Digit Recognition

Martin Loretz
 mnist-fpga@martinloretz.com

Abstract

This paper presents a high-speed, FPGA-optimized implementation of boosted decision trees for
handwritten digit recognition on the MNIST dataset, achieving a test set accuracy of 97.73% and a
throughput of 640 million images per second on a Cyclone V FPGA. By binarizing input images and
discretizing decision tree leaf scores, the design efficiently leverages FPGA hardware primitives
without any floating-point operations. Each decision tree leaf node is implemented as a single lookup
table, outputting high when active. Leaf node outputs are aggregated by counting active nodes per
discrete value and summing them in a common base. Leaf score discretization is performed after
each boosted tree training iteration, enabling subsequent trees to correct these discretization errors.
A four-core pipelined architecture, operating at 160 MHz, consumes 625 mW of power, achieving an
efficiency of 1.02 billion images per second per watt. This paper is submitted to the Digit Recognition
Low Power and Speed Challenge @ ICIP 2025.

This work is open source and available at github.com/martinloretzzz/mnist-fpga/.

Introduction

The Digit Recognition Low Power and Speed Challenge aims to find the fastest and most
energy-efficient FPGA-based hardware accelerator for handwritten digit recognition on the MNIST
dataset [1], targeting a test set accuracy exceeding 97.5%. To maximize throughput, we aim for the
smallest model that meets this accuracy threshold. While multilayer perceptrons (MLPs) and
convolutional neural networks (CNNs) can easily achieve this accuracy, their models typically contain
tens or hundreds of thousands of parameters and rely on floating-point arithmetic, making them
suboptimal for fast FPGA implementations.

Tree-based models offer a compelling alternative due to their compact size and computational
efficiency. Among these, boosted trees [2] stand out, achieving up to 98.2% accuracy with some
parameter tuning, while we were unable to reach the accuracy threshold with other tree-based
methods.

Rather than designing a generic runtime that can run any boosted tree, we aim to hardwire the entire
model on an FPGA into one block of combinatorial logic that processes one image per clock cycle. To
fit the boosted tree into the limited number of logic units available on an FPGA, we modify the
boosted trees to effectively use the hardware primitives of FPGAs.

1

mailto:mnist-fpga@martinloretz.com
https://mlunglma.github.io/challenge.html
https://mlunglma.github.io/challenge.html
https://github.com/martinloretzzz/mnist-fpga/

Discrete Boosted Trees

To optimize boosted trees for FPGAs, we eliminate all floating-point operations, as these require
floating-point units that are slow and resource-intensive. Floating-point values appear in two places:
the input image and the decision tree leaf scores.

For the input image, we binarize it using a fixed threshold to convert grayscale images into binary
(black or white) pixels. Experimental results indicate that a threshold of 0.3 works best for MNIST.
This binarization eliminates the need for comparators in decision nodes, as inputs are already binary.

Discretizing leaf scores is more complex, as post-training discretization would introduce significant
errors. Boosted trees are trained sequentially, one after another, with later trees correcting the errors
of earlier ones. This property enables discretization after each iteration when a tree is trained,
allowing later trees to compensate for those discretization errors.

The distribution of leaf scores is visualized in this histogram (for non-discretized trees):

While the trees of the first iterations have larger scores, the magnitude of these scores decreases
rapidly, with later trees contributing less to the total score. Based on this distribution, we propose this
set of discrete values: { -1/4, -1/8, -1/16, -1/32, -1/64, 0, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2 }.

This set enables a binary-like series expansion for intermediate values by combining multiple decision
trees with identical conditions in sequence; whether the model uses this capability can be investigated
in future work.

To implement this discretization, we forked the XGBoost library [3] (github.com/martinloretzzz/xgboost)
and modified it to adjust leaf scores after each iteration. Positive leaf scores are rounded down to the
nearest discrete value less than or equal to the exact score, while negative scores are rounded up to
the nearest discrete value greater than or equal to the exact score.

The impact of this discretization on accuracy is minimal. For smaller trees, a slight reduction in
accuracy is observed, whereas for larger trees, accuracy improves slightly. Investigating the reason
for this improvement is a topic for future work.

Number of Estimators Accuracy Exact % Accuracy Discrete %

100 97.84 97.75

150 97.98 98.05

200 98.06 98.14

2

https://github.com/martinloretzzz/xgboost

FPGA-Optimized Boosted Tree Implementation

This implementation optimizes a boosted tree that consists of 10 classifiers, each with 100 decision
trees as estimators and a maximum depth of four.

Each decision tree generates a binary vector of up to 16 elements (2^4), one-hot encoding the active
leaf node based on the binary pixel values of the input image. Each leaf node is implemented using a
4-input lookup table (LUT), where all conditions along the path are connected by AND gates.

For example, in this two-layer decision tree, leaf nodes are represented
by the following Boolean expressions:

L1 = ~A & ~B
L2 = ~A & B
L3 = A & ~C
L4 = A & C

This approach allows the implementation of all decision tree leaves of the MNIST classifier using
16,000 4-input LUTs. By accounting for shallower leaves and excluding zero-score ones, this total
number is reduced to approximately 12,500 LUTs.

Since only one leaf node per tree is active at a time and the set of discrete values is small, we can
further optimize by OR-connecting all leaf nodes with the same discrete value inside a tree to output
whether the tree uses that specific value. The compiler optimizes these OR connected leaves to LUTs
with more than 4 inputs and reduces the total number of LUTs needed for all trees to approximately
6,000.

Next, we sum the leaf values of all active leaf nodes. Without discretization, we could quantize them
and use a large integer adder, but this would consume most, if not all, FPGA resources.

With the discrete values instead, we can count the number of active leaf nodes for each discrete
value, effectively counting active bits in a vector. These counts are then converted to a common base
of 0.25 with bit shifts (enabled by the choice of the discrete values) and summed to compute the
classifier’s score. The counters are implemented as parallel prefix adders.

The predicted digit is then determined by identifying the classifier with the highest score, using a
four-step comparison tree.

See the appendix for a detailed example of these calculations.

The entire boosted tree implementation forms a single block of combinatorial logic, processing one
image per clock cycle (at 25 MHz). To increase throughput, we split the design into smaller stages to
pipeline it. For the highest throughput classifier, we use 16 pipeline stages with a clock rate of 160
MHz, leading to a latency of 100 ns. A single MNIST classifier only utilizes 22% of the available logic
units of the FPGA, so the design is synthesized four times to process four images per clock cycle.

The FPGA implementation’s accuracy of 97.73% on the MNIST test set is slightly lower than the
97.75% of the discretized model running with the XGBoost library, likely due to rounding errors during
the conversion of the value counts to the common base.

For a clearer understanding of the implementation, refer to the simple-pipelined tagged version, which
provides a four-stage pipelined design. The 16-stage pipelined, four-core implementation used for the
results is available in the master branch.

3

https://github.com/martinloretzzz/mnist-fpga/tree/simple-pipelined/fpga/hdl
https://github.com/martinloretzzz/mnist-fpga/tree/main/fpga/hdl

Results
FPGA Cyclone V (5CEFA7F31I7)

Logic utilization 51,015 / 56,480 ALM (90%)

Accuracy 97.73%

Clock Rate 160 MHz

Setup Slack* 0.052 ns

Cores 4

Throughput 640 Mimg/s

Latency 16 clock cycles (100 ns)

Power 624.90 mW

Images detections per second per watt 1024.1 Mimg/s/W

* Slow 1100mV -40°C (worst case)

To reproduce these results, follow the steps described in the Readme.md

Conclusion

This work presents an FPGA-optimized implementation of boosted decision trees for MNIST
handwritten digit recognition, achieving a test set accuracy of 97.73% while processing 640 million
images per second. By discretizing the leaf scores during training and binarizing input images, we can
efficiently leverage FPGA hardware primitives with minimal accuracy loss.

This approach is applicable to accelerate boosted trees on FPGAs when inputs can be binarized with
negligible information loss. These results demonstrate the potential of hardware-accelerated machine
learning models for high-speed inference in resource-constrained, low-power environments. Future
work could eliminate the binarization constraint by quantizing the input and using comparators in the
decision trees.

This design achieves an efficiency of 1.02 billion images per second per watt.

References

[1]: LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791

[2]: Hastie, T.; Tibshirani, R.; Friedman, J. H. (2009). "10. Boosting and Additive Trees". The
Elements of Statistical Learning (2nd ed.). New York: Springer. pp. 337–384. ISBN
978-0-387-84857-0.

[3]: Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(pp. 785–794). New York, NY, USA: ACM. https://doi.org/10.1145/2939672.2939785

4

https://github.com/martinloretzzz/mnist-fpga/blob/main/Readme.md
https://doi.org/10.1145/2939672.2939785

Appendix: Example Calculation

This example illustrates the calculation process for predicting the score of a single digit using two
single-layer decision trees. The process involves three main steps:

1. Determining Active Leaves: We first identify the active leaves in the boosted tree based on
the input image. For this example, consider an input where pixel P12 = True and P14 = False.
These conditions activate leaves L0 and L3 (decision_trees.sv).

2. Aggregating Active Leaves: The active leaves are counted for each discrete value using the
equations defined above for C0.5, C0.25 , and C0.125 (leaf_counters.sv).

3. Computing the Final Score: The counts are converted to a common base, in this case, 0.125,
and summed to compute the classifier’s score. In this example, the resulting score is 6
(counter_adder.sv).

This process is repeated for the classifiers of the 9 other digits, and the digit with the highest score is
selected as the final prediction (max_value_index.sv, mnist_classifier.sv).

5

https://github.com/martinloretzzz/mnist-fpga/tree/simple-pipelined/fpga/hdl/decision_trees.sv
https://github.com/martinloretzzz/mnist-fpga/blob/simple-pipelined/fpga/hdl/leaf_counters.sv
https://github.com/martinloretzzz/mnist-fpga/blob/simple-pipelined/fpga/hdl/counter_adder.sv
https://github.com/martinloretzzz/mnist-fpga/blob/simple-pipelined/fpga/hdl/max_value_index.sv
https://github.com/martinloretzzz/mnist-fpga/blob/simple-pipelined/fpga/hdl/mnist_classifier.sv

	Abstract
	Introduction
	Discrete Boosted Trees
	FPGA-Optimized Boosted Tree Implementation
	Results
	Conclusion
	
	References
	Appendix: Example Calculation

